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AIC.abnFit Print AIC of objects of class abnFit

Description

Print AIC of objects of class abnFit

Usage

## S3 method for class 'abnFit'
AIC(object, digits = 3L, verbose = TRUE, ...)

Arguments

object Object of class abnFit

digits number of digits of the results.

verbose print additional output.

... additional parameters. Not used at the moment.

Value

prints the AIC of the fitted model.
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BIC.abnFit Print BIC of objects of class abnFit

Description

Print BIC of objects of class abnFit

Usage

## S3 method for class 'abnFit'
BIC(object, digits = 3L, verbose = TRUE, ...)

Arguments

object Object of class abnFit

digits number of digits of the results.

verbose print additional output.

... additional parameters. Not used at the moment.

Value

prints the BIC of the fitted model.

build.control Control the iterations in buildScoreCache

Description

Allow the user to set restrictions in the buildScoreCache for both the Bayesian and the MLE
approach. Control function similar to fit.control.

Usage

build.control(
method = "bayes",
max.mode.error = 10,
mean = 0,
prec = 0.001,
loggam.shape = 1,
loggam.inv.scale = 5e-05,
max.iters = 100,
epsabs = 1e-07,
error.verbose = FALSE,
trace = 0L,
epsabs.inner = 1e-06,
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max.iters.inner = 100,
finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10,
max.hessian.error = 0.5,
factor.brent = 100,
maxiters.hessian.brent = 100,
num.intervals.brent = 100,
n.grid = 250,
ncores = 1,
cluster.type = "FORK",
max.irls = 100,
tol = 1e-08,
tolPwrss = 1e-07,
check.rankX = "message+drop.cols",
check.scaleX = "message+rescale",
check.conv.grad = "message",
check.conv.singular = "message",
check.conv.hess = "message",
xtol_abs = 1e-06,
ftol_abs = 1e-06,
trace.mblogit = FALSE,
catcov.mblogit = "free",
epsilon = 1e-06,
seed = 9062019L

)

Arguments

method a character that takes one of two values: "bayes" or "mle". Overrides method
argument from buildScoreCache.

max.mode.error if the estimated modes from INLA differ by a factor of max.mode.error or more
from those computed internally, then results from INLA are replaced by those
computed internally. To force INLA always to be used, then max.mode.error=100,
to force INLA never to be used max.mod.error=0. See also fitAbn.

mean the prior mean for all the Gaussian additive terms for each node. INLA argument
control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).

prec the prior precision (τ = 1
σ2 ) for all the Gaussian additive term for each node.

INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).
loggam.shape the shape parameter in the Gamma distribution prior for the precision in a Gaus-

sian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape,
loggam.inv.scale)))).

loggam.inv.scale

the inverse scale parameter in the Gamma distribution prior for the precision in a
Gaussian node. INLA argument control.family=list(hyper = list(prec =
list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).

max.iters total number of iterations allowed when estimating the modes in Laplace ap-
proximation. passed to .Call("fit_single_node", ...).
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epsabs absolute error when estimating the modes in Laplace approximation for models
with no random effects. Passed to .Call("fit_single_node", ...).

error.verbose logical, additional output in the case of errors occurring in the optimization.
Passed to .Call("fit_single_node", ...).

trace Non-negative integer. If positive, tracing information on the progress of the "L-
BFGS-B" optimization is produced. Higher values may produce more tracing
information. (There are six levels of tracing. To understand exactly what these
do see the source code.). Passed to .Call("fit_single_node", ...).

epsabs.inner absolute error in the maximization step in the (nested) Laplace approximation
for each random effect term. Passed to .Call("fit_single_node", ...).

max.iters.inner

total number of iterations in the maximization step in the nested Laplace ap-
proximation. Passed to .Call("fit_single_node", ...).

finite.step.size

suggested step length used in finite difference estimation of the derivatives for
the (outer) Laplace approximation when estimating modes. Passed to .Call("fit_single_node",
...).

hessian.params a numeric vector giving parameters for the adaptive algorithm, which determines
the optimal stepsize in the finite-difference estimation of the hessian. First entry
is the initial guess, second entry absolute error. Passed to .Call("fit_single_node",
...).

max.iters.hessian

integer, maximum number of iterations to use when determining an optimal fi-
nite difference approximation (Nelder-Mead). Passed to .Call("fit_single_node",
...).

max.hessian.error

if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using
an adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method. Passed to .Call("fit_single_node",
...).

factor.brent if using Brent-Dekker root bracketing method then define the outer most in-
terval end points as the best estimate of h (stepsize) from the Nelder-Mead as
h/factor.brent, h ∗ factor.brent). Passed to .Call("fit_single_node",
...).

maxiters.hessian.brent

maximum number of iterations allowed in the Brent-Dekker method. Passed to
.Call("fit_single_node", ...).

num.intervals.brent

the number of initial different bracket segments to try in the Brent-Dekker method.
Passed to .Call("fit_single_node", ...).

n.grid recompute density on an equally spaced grid with n.grid points.

ncores The number of cores to parallelize to, see ‘Details’. If >0, the number of CPU
cores to be used. -1 for all available -1 core. Only for method="mle".
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cluster.type The type of cluster to be used, see ?parallel::makeCluster. abn then defaults
to "PSOCK" on Windows and "FORK" on Unix-like systems. With "FORK" the
child process are started with rscript_args = "--no-environ" to avoid load-
ing the whole workspace into each child.

max.irls total number of iterations for estimating network scores using an Iterative Reweighed
Least Square algorithm. Is this DEPRECATED?

tol real number giving the minimal tolerance expected to terminate the Iterative
Reweighed Least Square algorithm to estimate network score. Passed to irls_binomial_cpp_fast_br
and irls_poisson_cpp_fast.

tolPwrss numeric scalar passed to glmerControl - the tolerance for declaring conver-
gence in the penalized iteratively weighted residual sum-of-squares step. Simi-
lar to tol.

check.rankX character passed to lmerControl and glmerControl - specifying if rankMatrix(X)
should be compared with ncol(X) and if columns from the design matrix should
possibly be dropped to ensure that it has full rank. Defaults to message+drop.cols.

check.scaleX character passed to lmerControl and glmerControl - check for problematic
scaling of columns of fixed-effect model matrix, e.g. parameters measured on
very different scales. Defaults to message+rescale.

check.conv.grad

character passed to lmerControl and glmerControl - checking the gradient
of the deviance function for convergence. Defaults to message but can be one
of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a
message if test fails; "stop" - throw an error if test fails.

check.conv.singular

character passed to lmerControl and glmerControl - checking for a singular
fit, i.e. one where some parameters are on the boundary of the feasible space (for
example, random effects variances equal to 0 or correlations between random
effects equal to +/- 1.0). Defaults to message but can be one of "ignore" - skip
the test; "warning" - warn if test fails; "message" - print a message if test fails;
"stop" - throw an error if test fails.

check.conv.hess

character passed to lmerControl and glmerControl - checking the Hessian
of the deviance function for convergence. Defaults to message but can be one
of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a
message if test fails; "stop" - throw an error if test fails.

xtol_abs Defaults to 1e-6 stop on small change of parameter value. Only for method='mle',
group.var=.... Default convergence tolerance for fitted (g)lmer models is re-
duced to the value provided here if default values did not fit. This value here is
passed to the optCtrl argument of (g)lmer (see help of lme4::convergence()).

ftol_abs Defaults to 1e-6 stop on small change in deviance. Similar to xtol_abs.

trace.mblogit logical indicating if output should be produced for each iteration. Directly
passed to trace argument in mclogit.control. Is independent of verbose.

catcov.mblogit Defaults to "free" meaning that there are no restrictions on the covariances of
random effects between the logit equations. Set to "diagonal" if random effects
pertinent to different categories are uncorrelated or "single" if random effect
variances pertinent to all categories are identical.
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epsilon Defaults to 1e-8. Positive convergence tolerance ϵ that is directly passed to
the control argument of mclogit::mblogit as mclogit.control. Only for
method='mle', group.var=....

seed a non-negative integer which sets the seed in set.seed(seed).

Details

Parallelization over all children is possible via the function foreach of the package doParallel.
ncores=0 or ncores=1 use single threaded foreach. ncores=-1 uses all available cores but one.

Value

Named list according the provided arguments.

See Also

fit.control.

Other buildScoreCache: buildScoreCache()

Examples

ctrlmle <- abn::build.control(method = "mle",
ncores = 0,
cluster.type = "PSOCK",
max.irls = 100,
tol = 10^-11,
tolPwrss = 1e-7,
check.rankX = "message+drop.cols",
check.scaleX = "message+rescale",
check.conv.grad = "message",
check.conv.singular = "message",
check.conv.hess = "message",
xtol_abs = 1e-6,
ftol_abs = 1e-6,
trace.mblogit = FALSE,
catcov.mblogit = "free",
epsilon = 1e-6,
seed = 9062019L)

ctrlbayes <- abn::build.control(method = "bayes",
max.mode.error = 10,
mean = 0, prec = 0.001,
loggam.shape = 1,
loggam.inv.scale = 5e-05,
max.iters = 100,
epsabs = 1e-07,
error.verbose = FALSE,
epsabs.inner = 1e-06,
max.iters.inner = 100,
finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10,
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max.hessian.error = 0.5,
factor.brent = 100,
maxiters.hessian.brent = 100,
num.intervals.brent = 100,
tol = 10^-8,
seed = 9062019L)

check.valid.fitControls

Simple check on the control parameters

Description

Simple check on the control parameters

Usage

check.valid.fitControls(control, method = "bayes", verbose = FALSE)

Arguments

control list of control arguments with new parameters supplied to buildScoreCache or
fitAbn.

method "bayes" or "mle" strategy from argument method=... in buildScoreCache or
fitAbn. Defaults to "bayes".

verbose when TRUE additional information is printed. Defaults to FALSE.

Value

list with all control arguments with respect to the method but with new values.

coef.abnFit Print coefficients of objects of class abnFit

Description

Print coefficients of objects of class abnFit

Usage

## S3 method for class 'abnFit'
coef(object, digits = 3L, verbose = TRUE, ...)
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Arguments

object Object of class abnFit

digits number of digits of the results.

verbose print additional output.

... additional parameters. Not used at the moment.

Value

prints the coefficients of the fitted model.

compareDag Compare two DAGs or EGs

Description

Function that returns multiple graph metrics to compare two DAGs or essential graphs, known as
confusion matrix or error matrix.

Usage

compareDag(ref, test, node.names = NULL, checkDAG = TRUE)

Arguments

ref a matrix or a formula statement (see details for format) defining the reference
network structure, a directed acyclic graph (DAG). Note that row names must
be set or given in node.names if the DAG is given via a formula statement.

test a matrix or a formula statement (see details for format) defining the test network
structure, a directed acyclic graph (DAG). Note that row names must be set or
given in node.names if the DAG is given via a formula statement.

node.names a vector of names if the DAGs are given via formula, see details.

checkDAG should the DAGs be tested for DAGs (default).

Details

This R function returns standard Directed Acyclic Graph comparison metrics. In statistical classifi-
cation, those metrics are known as a confusion matrix or error matrix.

Those metrics allows visualization of the difference between different DAGs. In the case where
comparing TRUTH to learned structure or two learned structures, those metrics allow the user to
estimate the performance of the learning algorithm. In order to compute the metrics, a contingency
table is computed of a pondered difference of the adjacency matrices od the two graphs.

The ref or test can be provided using a formula statement (similar to GLM input). A typical
formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to
start with ~. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have
the same parent3. The parents names have to exactly match those given in node.names. : is the
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separtor between either children or parents, | separates children (left side) and parents (right side),
+ separates terms, . replaces all the variables in node.names.

To test for essential graphs (or graphs) in general, the test for DAG need to be switched off checkDAG=FALSE.
The function compareEG() is a wrapper to compareDag(, checkDAG=FALSE).

Value

TP True Positive

TN True Negative

FP False Positive

FN False Negative

CP Condition Positive (ref)

CN Condition Negative (ref)

PCP Predicted Condition Positive (test)

PCN Predicted Condition Negative (test)

True Positive Rate

=

∑
TP∑
CP

False Positive Rate

=

∑
FP∑
CN

Accuracy

=

∑
TP +

∑
TN

Totalpopulation

G-measure √
TP

TP + FP
· TP

TP + FN

F1-Score
2
∑

TP

2
∑

TP +
∑

FN +
∑

FP

Positive Predictive Value ∑
TP∑
PCP

False Ommision Rate ∑
FN∑
PCN

Hamming-Distance Number of changes needed to match the matrices.

References

Sammut, Claude, and Geoffrey I. Webb. (2017). Encyclopedia of machine learning and data mining.
Springer.
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Examples

test.m <- matrix(data = c(0,1,0,
0,0,0,
1,0,0), nrow = 3, ncol = 3)

ref.m <- matrix(data = c(0,0,0,
1,0,0,
1,0,0), nrow = 3, ncol = 3)

colnames(test.m) <- rownames(test.m) <- colnames(ref.m) <- colnames(ref.m) <- c("a", "b", "c")

unlist(compareDag(ref = ref.m, test = test.m))

compareEG Compare two DAGs or EGs

Description

Function that returns multiple graph metrics to compare two DAGs or essential graphs, known as
confusion matrix or error matrix.

Usage

compareEG(ref, test)

Arguments

ref a matrix or a formula statement (see details for format) defining the reference
network structure, a directed acyclic graph (DAG). Note that row names must
be set or given in node.names if the DAG is given via a formula statement.

test a matrix or a formula statement (see details for format) defining the test network
structure, a directed acyclic graph (DAG). Note that row names must be set or
given in node.names if the DAG is given via a formula statement.

Details

This R function returns standard Directed Acyclic Graph comparison metrics. In statistical classifi-
cation, those metrics are known as a confusion matrix or error matrix.

Those metrics allows visualization of the difference between different DAGs. In the case where
comparing TRUTH to learned structure or two learned structures, those metrics allow the user to
estimate the performance of the learning algorithm. In order to compute the metrics, a contingency
table is computed of a pondered difference of the adjacency matrices od the two graphs.

The ref or test can be provided using a formula statement (similar to GLM input). A typical
formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to
start with ~. In this example, node1 has two parents (parent1 and parent2). node2 and node3 have
the same parent3. The parents names have to exactly match those given in node.names. : is the
separtor between either children or parents, | separates children (left side) and parents (right side),
+ separates terms, . replaces all the variables in node.names.
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To test for essential graphs (or graphs) in general, the test for DAG need to be switched off checkDAG=FALSE.
The function compareEG() is a wrapper to compareDag(, checkDAG=FALSE).

Value

TP True Positive

TN True Negative

FP False Positive

FN False Negative

CP Condition Positive (ref)

CN Condition Negative (ref)

PCP Predicted Condition Positive (test)

PCN Predicted Condition Negative (test)

True Positive Rate

=

∑
TP∑
CP

False Positive Rate

=

∑
FP∑
CN

Accuracy

=

∑
TP +

∑
TN

Totalpopulation

G-measure √
TP

TP + FP
· TP

TP + FN

F1-Score
2
∑

TP

2
∑

TP +
∑

FN +
∑

FP

Positive Predictive Value ∑
TP∑
PCP

False Ommision Rate ∑
FN∑
PCN

Hamming-Distance Number of changes needed to match the matrices.

References

Sammut, Claude, and Geoffrey I. Webb. (2017). Encyclopedia of machine learning and data mining.
Springer.
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Examples

test.m <- matrix(data = c(0,1,0,
0,0,0,
1,0,0), nrow = 3, ncol = 3)

ref.m <- matrix(data = c(0,0,0,
1,0,0,
1,0,0), nrow = 3, ncol = 3)

colnames(test.m) <- rownames(test.m) <- colnames(ref.m) <- colnames(ref.m) <- c("a", "b", "c")

unlist(compareDag(ref = ref.m, test = test.m))

discretization Discretization of a Possibly Continuous Data Frame of Random Vari-
ables based on their distribution

Description

This function discretizes a data frame of possibly continuous random variables through rules for
discretization. The discretization algorithms are unsupervised and univariate. See details for the
complete list of discretization rules (the number of state of each random variable could also be
provided).

Usage

discretization(data.df = NULL,
data.dists = NULL,
discretization.method = "sturges",
nb.states = FALSE)

Arguments

data.df a data frame containing the data to discretize, binary and multinomial variables
must be declared as factors, others as a numeric vector. The data frame must be
named.

data.dists a named list giving the distribution for each node in the network.

discretization.method

a character vector giving the discretization method to use; see details. If a num-
ber is provided, the variable will be discretized by equal binning.

nb.states logical variable to select the output. If set to TRUE a list with the discretized data
frame and the number of state of each variable is returned. If set to FALSE only
the discretized data frame is returned.
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Details

fd Freedman Diaconis rule. IQR() stands for interquartile range. The number of bins is given by

range(x) ∗ n1/3

2 ∗ IQR(x)

The Freedman Diaconis rule is known to be less sensitive than the Scott’s rule to outlier.

doane Doane’s rule. The number of bins is given by

1 + log2 n+ log2 1 +
|g|
σg

This is a modification of Sturges’ formula, which attempts to improve its performance with non-
normal data.

sqrt The number of bins is given by: √
(n)

cencov Cencov’s rule. The number of bins is given by:

n1/3

rice Rice’ rule. The number of bins is given by:

2n1/3

terrell-scott Terrell-Scott’s rule. The number of bins is given by:

(2n)1/3

It is known that Cencov, Rice, and Terrell-Scott rules over-estimates k, compared to other rules due
to its simplicity.

sturges Sturges’s rule. The number of bins is given by:

1 + log2(n)

scott Scott’s rule. The number of bins is given by:

range(x)/σ(x)n−1/3

Value

The discretized data frame or a list containing the table of counts for each bin the discretized data
frame.

table of counts for each bin of the discretized data frame.

References

Garcia, S., et al. (2013). A survey of discretization techniques: Taxonomy and empirical analysis
in supervised learning. IEEE Transactions on Knowledge and Data Engineering, 25.4, 734-750.

Cebeci, Z. and Yildiz, F. (2017). Unsupervised Discretization of Continuous Variables in a Chicken
Egg Quality Traits Dataset. Turkish Journal of Agriculture-Food Science and Technology, 5.4, 315-
320.
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Examples

## Generate random variable
rv <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list("gaussian")
names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(freqs.table = discretization(data.df = rv, data.dists = dist,
discretization.method = "sturges", nb.states = FALSE))

entropyData Computes an Empirical Estimation of the Entropy from a Table of
Counts

Description

This function empirically estimates the Shannon entropy from a table of counts using the observed
frequencies.

Usage

entropyData(freqs.table)

Arguments

freqs.table a table of counts.

Details

The general concept of entropy is defined for probability distributions. The entropyData() func-
tion estimates empirical entropy from data. The probability is estimated from data using frequency
tables. Then the estimates are plug-in in the definition of the entropy to return the so-called empiri-
cal entropy. A common known problem of empirical entropy is that the estimations are biased due
to the sampling noise. It is also known that the bias will decrease as the sample size increases.

Value

Shannon’s entropy estimate on natural logarithm scale.

integer

References

Cover, Thomas M, and Joy A Thomas. (2012). "Elements of Information Theory". John Wiley &
Sons.

See Also

discretization
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Examples

## Generate random variable
rv <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list("gaussian")
names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(freqs.table = discretization(data.df = rv, data.dists = dist,
discretization.method = "sturges", nb.states = FALSE))

essentialGraph Construct the essential graph

Description

Constructs different versions of the essential graph from a given DAG. External function that com-
putes essential graph of a dag Minimal PDAG: The only directed edges are those who participate
in v-structure Completed PDAG: very directed edge corresponds to a compelled edge, and every
undirected edge corresponds to a reversible edge

Usage

essentialGraph(dag, node.names = NULL, PDAG = "minimal")

Arguments

dag a matrix or a formula statement (see ‘Details’ for format) defining the network
structure, a directed acyclic graph (DAG).

node.names a vector of names if the DAG is given via formula, see ‘Details’.
PDAG a character value that can be: minimal or complete, see ‘Details’.

Details

This function returns an essential graph from a DAG, aka acyclic partially directed graph (PDAG).
This can be useful if the learning procedure is defined up to a Markov class of equivalence. A
minimal PDAG is defined as only directed edges are those who participate in v-structure. Whereas
the completed PDAG: every directed edge corresponds to a compelled edge, and every undirected
edge corresponds to a reversible edge.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in node.names. : is the separa-
tor between either children or parents, | separates children (left side) and parents (right side), +
separates terms, . replaces all the variables in node.names.

Value

A matrix giving the PDAG.
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References

West, D. B. (2001). Introduction to Graph Theory. Vol. 2. Upper Saddle River: Prentice Hall.
Chickering, D. M. (2013) A Transformational Characterization of Equivalent Bayesian Network
Structures, arXiv:1302.4938.

Examples

dag <- matrix(c(0,0,0, 1,0,0, 1,1,0), nrow = 3, ncol = 3)
dist <- list(a="gaussian", b="gaussian", c="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

essentialGraph(dag)

expit expit of proportions

Description

See also the C implementation ?abn::expit_cpp().

Usage

expit(x)

Arguments

x numeric with values between [0,1].

Value

numeric vector of same length as x.

expit_cpp expit function

Description

transform x either via the logit, or expit.

Usage

expit_cpp(x)

Arguments

x a numeric vector
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Value

a numeric vector

family.abnFit Print family of objects of class abnFit

Description

Print family of objects of class abnFit

Usage

## S3 method for class 'abnFit'
family(object, ...)

Arguments

object Object of class abnFit

... additional parameters. Not used at the moment.

Value

prints the distributions for each variable of the fitted model.

fit.control Control the iterations in fitAbn

Description

Allow the user to set restrictions in the fitAbn for both the Bayesian and the MLE approach.
Control function similar to build.control.

Usage

fit.control(
method = "bayes",
max.mode.error = 10,
mean = 0,
prec = 0.001,
loggam.shape = 1,
loggam.inv.scale = 5e-05,
max.iters = 100,
epsabs = 1e-07,
error.verbose = FALSE,
trace = 0L,
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epsabs.inner = 1e-06,
max.iters.inner = 100,
finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10,
max.hessian.error = 1e-04,
factor.brent = 100,
maxiters.hessian.brent = 10,
num.intervals.brent = 100,
min.pdf = 0.001,
n.grid = 250,
std.area = TRUE,
marginal.quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
max.grid.iter = 1000,
marginal.node = NULL,
marginal.param = NULL,
variate.vec = NULL,
ncores = 1,
cluster.type = "FORK",
max.irls = 100,
tol = 1e-11,
tolPwrss = 1e-07,
check.rankX = "message+drop.cols",
check.scaleX = "message+rescale",
check.conv.grad = "message",
check.conv.singular = "message",
check.conv.hess = "message",
xtol_abs = 1e-06,
ftol_abs = 1e-06,
trace.mblogit = FALSE,
catcov.mblogit = "free",
epsilon = 1e-06,
seed = 9062019L

)

Arguments

method a character that takes one of two values: "bayes" or "mle". Overrides method
argument from buildScoreCache.

max.mode.error if the estimated modes from INLA differ by a factor of max.mode.error or more
from those computed internally, then results from INLA are replaced by those
computed internally. To force INLA always to be used, then max.mode.error=100,
to force INLA never to be used max.mod.error=0. See also fitAbn.

mean the prior mean for all the Gaussian additive terms for each node. INLA argument
control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).

prec the prior precision (τ = 1
σ2 ) for all the Gaussian additive term for each node.

INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).
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loggam.shape the shape parameter in the Gamma distribution prior for the precision in a Gaus-
sian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape,
loggam.inv.scale)))).

loggam.inv.scale

the inverse scale parameter in the Gamma distribution prior for the precision in a
Gaussian node. INLA argument control.family=list(hyper = list(prec =
list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).

max.iters total number of iterations allowed when estimating the modes in Laplace ap-
proximation. passed to .Call("fit_single_node", ...).

epsabs absolute error when estimating the modes in Laplace approximation for models
with no random effects. Passed to .Call("fit_single_node", ...).

error.verbose logical, additional output in the case of errors occurring in the optimization.
Passed to .Call("fit_single_node", ...).

trace Non-negative integer. If positive, tracing information on the progress of the "L-
BFGS-B" optimization is produced. Higher values may produce more tracing
information. (There are six levels of tracing. To understand exactly what these
do see the source code.). Passed to .Call("fit_single_node", ...).

epsabs.inner absolute error in the maximization step in the (nested) Laplace approximation
for each random effect term. Passed to .Call("fit_single_node", ...).

max.iters.inner

total number of iterations in the maximization step in the nested Laplace ap-
proximation. Passed to .Call("fit_single_node", ...).

finite.step.size

suggested step length used in finite difference estimation of the derivatives for
the (outer) Laplace approximation when estimating modes. Passed to .Call("fit_single_node",
...).

hessian.params a numeric vector giving parameters for the adaptive algorithm, which determines
the optimal stepsize in the finite-difference estimation of the hessian. First entry
is the initial guess, second entry absolute error. Passed to .Call("fit_single_node",
...).

max.iters.hessian

integer, maximum number of iterations to use when determining an optimal fi-
nite difference approximation (Nelder-Mead). Passed to .Call("fit_single_node",
...).

max.hessian.error

if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using
an adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method. Passed to .Call("fit_single_node",
...).

factor.brent if using Brent-Dekker root bracketing method then define the outer most in-
terval end points as the best estimate of h (stepsize) from the Nelder-Mead as
h/factor.brent, h ∗ factor.brent). Passed to .Call("fit_single_node",
...).
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maxiters.hessian.brent

maximum number of iterations allowed in the Brent-Dekker method. Passed to
.Call("fit_single_node", ...).

num.intervals.brent

the number of initial different bracket segments to try in the Brent-Dekker method.
Passed to .Call("fit_single_node", ...).

min.pdf the value of the posterior density function below which we stop the estimation
only used when computing marginals, see details.

n.grid recompute density on an equally spaced grid with n.grid points.

std.area logical, should the area under the estimated posterior density be standardized to
exactly one, useful for error checking.

marginal.quantiles

vector giving quantiles at which to compute the posterior marginal distribution
at.

max.grid.iter gives number of grid points to estimate posterior density at when not explicitly
specifying a grid used to avoid excessively long computation.

marginal.node used in conjunction with marginal.param to allow bespoke estimate of a marginal
density over a specific grid. value from 1 to the number of nodes.

marginal.param used in conjunction with marginal.node. value of 1 is for intercept, see modes
entry in results for the appropriate number.

variate.vec a vector containing the places to evaluate the posterior marginal density, must
be supplied if marginal.node is not null.

ncores The number of cores to parallelize to, see ‘Details’. If >0, the number of CPU
cores to be used. -1 for all available -1 core. Only for method="mle".

cluster.type The type of cluster to be used, see ?parallel::makeCluster. abn then defaults
to "PSOCK" on Windows and "FORK" on Unix-like systems. With "FORK" the
child process are started with rscript_args = "--no-environ" to avoid load-
ing the whole workspace into each child.

max.irls total number of iterations for estimating network scores using an Iterative Reweighed
Least Square algorithm. Is this DEPRECATED?

tol real number giving the minimal tolerance expected to terminate the Iterative
Reweighed Least Square algorithm to estimate network score. Passed to irls_binomial_cpp_fast_br
and irls_poisson_cpp_fast.

tolPwrss numeric scalar passed to glmerControl - the tolerance for declaring conver-
gence in the penalized iteratively weighted residual sum-of-squares step. Simi-
lar to tol.

check.rankX character passed to lmerControl and glmerControl - specifying if rankMatrix(X)
should be compared with ncol(X) and if columns from the design matrix should
possibly be dropped to ensure that it has full rank. Defaults to message+drop.cols.

check.scaleX character passed to lmerControl and glmerControl - check for problematic
scaling of columns of fixed-effect model matrix, e.g. parameters measured on
very different scales. Defaults to message+rescale.
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check.conv.grad

character passed to lmerControl and glmerControl - checking the gradient
of the deviance function for convergence. Defaults to message but can be one
of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a
message if test fails; "stop" - throw an error if test fails.

check.conv.singular

character passed to lmerControl and glmerControl - checking for a singular
fit, i.e. one where some parameters are on the boundary of the feasible space (for
example, random effects variances equal to 0 or correlations between random
effects equal to +/- 1.0). Defaults to message but can be one of "ignore" - skip
the test; "warning" - warn if test fails; "message" - print a message if test fails;
"stop" - throw an error if test fails.

check.conv.hess

character passed to lmerControl and glmerControl - checking the Hessian
of the deviance function for convergence. Defaults to message but can be one
of "ignore" - skip the test; "warning" - warn if test fails; "message" - print a
message if test fails; "stop" - throw an error if test fails.

xtol_abs Defaults to 1e-6 stop on small change of parameter value. Only for method='mle',
group.var=.... Default convergence tolerance for fitted (g)lmer models is re-
duced to the value provided here if default values did not fit. This value here is
passed to the optCtrl argument of (g)lmer (see help of lme4::convergence()).

ftol_abs Defaults to 1e-6 stop on small change in deviance. Similar to xtol_abs.

trace.mblogit logical indicating if output should be produced for each iteration. Directly
passed to trace argument in mclogit.control. Is independent of verbose.

catcov.mblogit Defaults to "free" meaning that there are no restrictions on the covariances of
random effects between the logit equations. Set to "diagonal" if random effects
pertinent to different categories are uncorrelated or "single" if random effect
variances pertinent to all categories are identical.

epsilon Defaults to 1e-8. Positive convergence tolerance ϵ that is directly passed to
the control argument of mclogit::mblogit as mclogit.control. Only for
method='mle', group.var=....

seed a non-negative integer which sets the seed in set.seed(seed).

Details

Parallelization over all children is possible via the function foreach of the package doParallel.
ncores=0 or ncores=1 use single threaded foreach. ncores=-1 uses all available cores but one.

Value

a list of control parameters for the fitAbn function.

See Also

build.control.

Other fitAbn: fitAbn()
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Examples

ctrlmle <- abn::fit.control(method = "mle",
max.irls = 100,
tol = 10^-11,
tolPwrss = 1e-7,
xtol_abs = 1e-6,
ftol_abs = 1e-6,
epsilon = 1e-6,
ncores = 2,
cluster.type = "PSOCK",
seed = 9062019L)

ctrlbayes <- abn::fit.control(method = "bayes",
mean = 0,
prec = 0.001,
loggam.shape = 1,
loggam.inv.scale = 5e-05,
max.mode.error = 10,
max.iters = 100,
epsabs = 1e-07,
error.verbose = FALSE,
epsabs.inner = 1e-06,
max.iters.inner = 100,
finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10,
max.hessian.error = 1e-04,
factor.brent = 100,
maxiters.hessian.brent = 10,
num.intervals.brent = 100,
min.pdf = 0.001,
n.grid = 100,
std.area = TRUE,
marginal.quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
max.grid.iter = 1000,
marginal.node = NULL,
marginal.param = NULL,
variate.vec = NULL,
ncores = 1,
cluster.type = NULL,
seed = 9062019L)

getMSEfromModes Extract Standard Deviations from all Gaussian Nodes

Description

Extract Standard Deviations from all Gaussian Nodes
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Usage

getMSEfromModes(modes, dists)

Arguments

modes list of modes.

dists list of distributions.

Value

named numeric vector. Names correspond to node name. Value to standard deviations.

infoDag Compute standard information for a DAG.

Description

This function returns standard metrics for DAG description. A list that contains the number of
nodes, the number of arcs, the average Markov blanket size, the neighborhood average set size, the
parent average set size and children average set size.

Usage

infoDag(object, node.names = NULL)

Arguments

object an object of class abnLearned, abnFit. Alternatively, a matrix or a formula
statement defining the network structure, a directed acyclic graph (DAG). Note
that row names must be set up or given in node.names.

node.names a vector of names if the DAG is given via formula, see details.

Details

This function returns a named list with the following entries: the number of nodes, the number of
arcs, the average Markov blanket size, the neighborhood average set size, the parent average set
size, and the children’s average set size.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in node.names. : is the separa-
tor between either children or parents, | separates children (left side) and parents (right side), +
separates terms, . replaces all the variables in node.names.
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Value

A named list that contains following entries: the number of nodes, the number of arcs, the average
Markov blanket size, the neighborhood average set size, the parent average set size and children
average set size.

References

West, D. B. (2001). Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice Hall.

Examples

## Creating a dag:
dag <- matrix(c(0,0,0,0, 1,0,0,0, 1,1,0,1, 0,1,0,0), nrow = 4, ncol = 4)
dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

infoDag(dag)
plot(createAbnDag(dag = dag, data.dists = dist))

linkStrength Returns the strengths of the edge connections in a Bayesian Network
learned from observational data

Description

A flexible implementation of multiple proxy for strength measures useful for visualizing the edge
connections in a Bayesian Network learned from observational data.

Usage

linkStrength(dag,
data.df = NULL,
data.dists = NULL,
method = c("mi.raw",

"mi.raw.pc",
"mi.corr",
"ls",
"ls.pc",
"stat.dist"),

discretization.method = "doane")

Arguments

dag a matrix or a formula statement (see details for format) defining the network
structure, a directed acyclic graph (DAG). Note that rownames must be set or
given in data.dist if the DAG is given via a formula statement.

data.df a data frame containing the data used for learning each node, binary variables
must be declared as factors.
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data.dists a named list giving the distribution for each node in the network, see ‘Details’.

method the method to be used. See ‘Details’.
discretization.method

a character vector giving the discretization method to use. See discretization.

Details

This function returns multiple proxies for estimating the connection strength of the edges of a
possibly discretized Bayesian network’s data set. The returned connection strength measures are:
the Raw Mutual Information (mi.raw), the Percentage Mutual information (mi.raw.pc), the Raw
Mutual Information computed via correlation (mi.corr), the link strength (ls), the percentage link
strength (ls.pc) and the statistical distance (stat.dist).

The general concept of entropy is defined for probability distributions. The probability is estimated
from data using frequency tables. Then the estimates are plug-in in the definition of the entropy
to return the so-called empirical entropy. A standard known problem of empirical entropy is that
the estimations are biased due to the sampling noise. This is also known that the bias will decrease
as the sample size increases. The mutual information estimation is computed from the observed
frequencies through a plug-in estimator based on entropy. For the case of an arc going from the
node X to the node Y and the remaining set of parent of Y is denoted as Z.

The mutual information is defined as I(X, Y) = H(X) + H(Y) - H(X, Y), where H() is the entropy.

The Percentage Mutual information is defined as PI(X,Y) = I(X,Y)/H(Y|Z).

The Mutual Information computed via correlation is defined as MI(X,Y) = -0.5 log(1-cor(X,Y)^2).

The link strength is defined as LS(X->Y) = H(Y|Z)-H(Y|X,Z).

The percentage link strength is defined as PLS(X->Y) = LS(X->Y) / H(Y|Z).

The statistical distance is defined as SD(X,Y) = 1- MI(X,Y) / max(H(X),H(Y)).

Value

The function returns a named matrix with the requested metric.

References

Boerlage, B. (1992). Link strength in Bayesian networks. Diss. University of British Columbia.
Ebert-Uphoff, Imme. "Tutorial on how to measure link strengths in discrete Bayesian networks."
(2009).

Examples

# Gaussian
N <- 1000
mydists <- list(a="gaussian",

b="gaussian",
c="gaussian")

a <- rnorm(n = N, mean = 0, sd = 1)
b <- 1 + 2*rnorm(n = N, mean = 5, sd = 1)
c <- 2 + 1*a + 2*b + rnorm(n = N, mean = 2, sd = 1)
mydf <- data.frame("a" = a,

"b" = b,
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"c" = c)
mycache.mle <- buildScoreCache(data.df = mydf,

data.dists = mydists,
method = "mle",
max.parents = 2)

mydag.mp <- mostProbable(score.cache = mycache.mle, verbose = FALSE)
linkstr <- linkStrength(dag = mydag.mp$dag,

data.df = mydf,
data.dists = mydists,
method = "ls",
discretization.method = "sturges")

logit Logit of proportions

Description

See also the C implementation ?abn::logit_cpp().

Usage

logit(x)

Arguments

x numeric with values between [0,1].

Value

numeric vector of same length as x.

numeric vector of same length as x.

logit_cpp logit functions

Description

transform x either via the logit, or expit.

Usage

logit_cpp(x)

Arguments

x a numeric vector
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Value

a numeric vector

logLik.abnFit Print logLik of objects of class abnFit

Description

Print logLik of objects of class abnFit

Usage

## S3 method for class 'abnFit'
logLik(object, digits = 3L, verbose = TRUE, ...)

Arguments

object Object of class abnFit

digits number of digits of the results.

verbose print additional output.

... additional parameters. Not used at the moment.

Value

prints the logLik of the fitted model.

mb Compute the Markov blanket

Description

This function computes the Markov blanket of a set of nodes given a DAG (Directed Acyclic Graph).

Usage

mb(dag, node, data.dists = NULL)

Arguments

dag a matrix or a formula statement (see details for format) defining the network
structure, a directed acyclic graph (DAG).

node a character vector of the nodes for which the Markov Blanket should be returned.

data.dists a named list giving the distribution for each node in the network, see details.
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Details

This function returns the Markov Blanket of a set of nodes given a DAG.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
node1|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, node1 has two parents (parent1 and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in name. : is the separtor between
either children or parents, | separates children (left side) and parents (right side), + separates terms,
. replaces all the variables in name.

Value

character vector of node names from the Markov blanket.

Examples

## Defining distribution and dag
dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian",

e="binomial", f="binomial")
dag <- matrix(c(0,1,1,0,1,0,

0,0,1,1,0,1,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,1,
0,0,0,0,0,0), nrow = 6L, ncol = 6L, byrow = TRUE)

colnames(dag) <- rownames(dag) <- names(dist)

mb(dag, node = "b")
mb(dag, node = c("b","e"))

mb(~a|b:c:e+b|c:d:f+e|f, node = "e", data.dists = dist)

miData Empirical Estimation of the Entropy from a Table of Counts

Description

This function empirically estimates the Mutual Information from a table of counts using the ob-
served frequencies.

Usage

miData(freqs.table, method = c("mi.raw", "mi.raw.pc"))

Arguments

freqs.table a table of counts.

method a character determining if the Mutual Information should be normalized.
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Details

The mutual information estimation is computed from the observed frequencies through a plugin
estimator based on entropy.

The plugin estimator is
I(X,Y ) = H(X) +H(Y )−H(X,Y )

, where
H()

is the entropy computed with entropyData.

Value

Mutual information estimate.

integer

References

Cover, Thomas M, and Joy A Thomas. (2012). "Elements of Information Theory". John Wiley &
Sons.

See Also

discretization

Examples

## Generate random variable
Y <- rnorm(n = 100, mean = 0, sd = 2)
X <- rnorm(n = 100, mean = 5, sd = 2)

dist <- list(Y="gaussian", X="gaussian")

miData(discretization(data.df = cbind(X,Y), data.dists = dist,
discretization.method = "fd", nb.states = FALSE),
method = "mi.raw")

modes2coefs Convert modes to fitAbn.mle$coefs structure

Description

Convert modes to fitAbn.mle$coefs structure

Usage

modes2coefs(modes)
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Arguments

modes list of modes.

Value

list of matrix arrays.

mostProbable Find most probable DAG structure

Description

Find most probable DAG structure using exact order based approach due to Koivisto and Sood,
2004.

Usage

mostProbable(score.cache, score="bic", prior.choice=1, verbose=TRUE, ...)

Arguments

score.cache object of class abnCache typically outputted by from buildScoreCache().

score which score should be used to score the network. Possible choices are aic,
bic, mdl, mlik.

prior.choice an integer, 1 or 2, where 1 is a uniform structural prior and 2 uses a weighted
prior, see details

verbose if TRUE then provides some additional output.

... further arguments passed to or from other methods.

Details

The procedure runs the exact order based structure discovery approach of Koivisto and Sood (2004)
to find the most probable posterior network (DAG). The local.score is the node cache, as created
using buildScoreCache (or manually provided the same format is used). Note that the scope of
this search is given by the options used in local.score, for example, by restricting the number of
parents or the ban or retain constraints given there.

This routine can take a long time to complete and is highly sensitive to the number of nodes in the
network. It is recommended to use this on a reduced data set to get an idea as to the computational
practicality of this approach. In particular, memory usage can quickly increase to beyond what
may be available. For additive models, problems comprising up to 20 nodes are feasible on most
machines. Memory requirements can increase considerably after this, but then so does the run
time making this less practical. It is recommended that some form of over-modeling adjustment is
performed on this resulting DAG (unless dealing with vast numbers of observations), for example,
using parametric bootstrapping, which is straightforward to implement in MCMC engines such as
JAGS or WinBUGS. See the case studies at https://r-bayesian-networks.org/ or the files

https://r-bayesian-networks.org/
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provided in the package directories inst/bootstrapping_example and inst/old_vignette for
details.

The parameter prior.choice determines the prior used within each node for a given choice of
parent combination. In Koivisto and Sood (2004) p.554, a form of prior is used, which assumes
that the prior probability for parent combinations comprising of the same number of parents are all
equal. Specifically, that the prior probability for parent set G with cardinality |G| is proportional to
1/[n-1 choose |G|] where there are n total nodes. Note that this favors parent combinations with
either very low or very high cardinality, which may not be appropriate. This prior is used when
prior.choice=2. When prior.choice=1 an uninformative prior is used where parent combina-
tions of all cardinalities are equally likely. The latter is equivalent to the structural prior used in the
heuristic searches e.g., searchHillclimber or searchHeuristic.

Note that the network score (log marginal likelihood) of the most probable DAG is not returned as
it can easily be computed using fitAbn, see examples below.

Value

An object of class abnMostprobable, which is a list containing: a matrix giving the DAG definition
of the most probable posterior structure, the cache of pre-computed scores and the score used for
selection.

References

Koivisto, M. V. (2004). Exact Structure Discovery in Bayesian Networks, Journal of Machine
Learning Research, vol 5, 549-573.

Examples

## Not run:
##############################
## Example 1
##############################
## This data comes with 'abn' see ?ex1.dag.data
mydat <- ex1.dag.data[1:5000, c(1:7, 10)]

## Setup distribution list for each node:
mydists <- list(b1 = "binomial",

p1 = "poisson",
g1 = "gaussian",
b2 = "binomial",
p2 = "poisson",
b3 = "binomial",
g2 = "gaussian",
g3 = "gaussian")

## Parent limits, for speed purposes quite specific here:
max_par <- list("b1" = 0,

"p1" = 0,
"g1" = 1,
"b2" = 1,
"p2" = 2,
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"b3" = 3,
"g2" = 3,
"g3" = 2)

## Now build cache (no constraints in ban nor retain)
mycache <- buildScoreCache(data.df = mydat,

data.dists = mydists,
max.parents = max_par)

## Find the globally best DAG:
mp_dag <- mostProbable(score.cache = mycache)
myres <- fitAbn(object = mp_dag,

create.graph = TRUE)
plot(myres) # plot the best model

## Fit the known true DAG (up to variables 'b4' and 'b5'):
true_dag <- matrix(data = 0, ncol = 8, nrow = 8)
colnames(true_dag) <- rownames(true_dag) <- names(mydists)

true_dag["p2", c("b1", "p1")] <- 1
true_dag["b3", c("b1", "g1", "b2")] <- 1
true_dag["g2", c("p1", "g1", "b2")] <- 1
true_dag["g3", c("g1", "b2")] <- 1

fitAbn(dag = true_dag,
data.df = mydat,
data.dists = mydists)$mlik

#################################################################
## Example 2 - models with random effects
#################################################################
## This data comes with abn see ?ex3.dag.data
mydat <- ex3.dag.data[, c(1:4, 14)]
mydists <- list(b1 = "binomial",

b2 = "binomial",
b3 = "binomial",
b4 = "binomial")

## This takes a few seconds and requires INLA:
mycache_mixed <- buildScoreCache(data.df = mydat,

data.dists = mydists,
group.var = "group",
max.parents = 2)

## Find the most probable DAG:
mp_dag <- mostProbable(score.cache = mycache_mixed)
## and get goodness of fit:
fitAbn(object = mp_dag,

group.var = "group")$mlik

## End(Not run)
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nobs.abnFit Print number of observations of objects of class abnFit

Description

Print number of observations of objects of class abnFit

Usage

## S3 method for class 'abnFit'
nobs(object, ...)

Arguments

object Object of class abnFit

... additional parameters. Not used at the moment.

Value

prints the number of observations of the fitted model.

odds Probability to odds

Description

Probability to odds

Usage

odds(x)

Arguments

x numeric vector of probabilities with values between [0,1].

Value

numeric vector of same length as x.
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or Odds Ratio from a matrix

Description

Compute the odds ratio from a contingency table or a matrix.

Usage

or(x)

Arguments

x a 2x2 table or matrix.

Value

A real value.

plot.abnDag Plots DAG from an object of class abnDag

Description

Plots DAG from an object of class abnDag

Usage

## S3 method for class 'abnDag'
plot(x, ...)

Arguments

x Object of class abnDag

... additional parameters. Not used at the moment.

Value

Rgraphviz::plot

Examples

mydag <- createAbnDag(dag = ~a+b|a,
data.df = data.frame("a"=1, "b"=1),
data.dists = list(a="binomial", b="gaussian"))

plot(mydag)
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plot.abnFit Plot objects of class abnFit

Description

Plot objects of class abnFit

Usage

## S3 method for class 'abnFit'
plot(x, ...)

Arguments

x Object of class abnFit

... additional parameters. Not used at the moment.

Value

a plot of the fitted model.

plot.abnHeuristic Plot objects of class abnHeuristic

Description

Plot objects of class abnHeuristic

Usage

## S3 method for class 'abnHeuristic'
plot(x, ...)

Arguments

x Object of class abnHeuristic

... additional parameters. Not used at the moment.

Value

plot of the scores of the heuristic search.
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plot.abnHillClimber Plot objects of class abnHillClimber

Description

Plot objects of class abnHillClimber

Usage

## S3 method for class 'abnHillClimber'
plot(x, ...)

Arguments

x Object of class abnHillClimber

... additional parameters. Not used at the moment.

Value

plot of the consensus DAG.

plot.abnMostprobable Plot objects of class abnMostprobable

Description

Plot objects of class abnMostprobable

Usage

## S3 method for class 'abnMostprobable'
plot(x, ...)

Arguments

x Object of class abnMostprobable

... additional parameters. Not used at the moment.

Value

plot of the mostprobable consensus DAG.
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print.abnCache Print objects of class abnCache

Description

Print objects of class abnCache

Usage

## S3 method for class 'abnCache'
print(x, digits = 3, ...)

Arguments

x Object of class abnCache

digits number of digits of the results.

... additional parameters. Not used at the moment.

Value

summary statement of the class of abnCache.

Examples

## Subset of the build-in dataset, see ?ex0.dag.data
mydat <- ex0.dag.data[,c("b1","b2","g1","g2","b3","g3")] ## take a subset of cols

## setup distribution list for each node
mydists <- list(b1="binomial", b2="binomial", g1="gaussian",

g2="gaussian", b3="binomial", g3="gaussian")

# Structural constraints
# ban arc from b2 to b1
# always retain arc from g2 to g1

## parent limits
max.par <- list("b1"=2, "b2"=2, "g1"=2, "g2"=2, "b3"=2, "g3"=2)

## now build the cache of pre-computed scores accordingly to the structural constraints
if(requireNamespace("INLA", quietly = TRUE)){

# Run only if INLA is available
res.c <- buildScoreCache(data.df=mydat, data.dists=mydists,

dag.banned= ~b1|b2, dag.retained= ~g1|g2, max.parents=max.par)
print(res.c)
}
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print.abnDag Print objects of class abnDag

Description

Print objects of class abnDag

Usage

## S3 method for class 'abnDag'
print(x, digits = 3L, ...)

Arguments

x Object of class abnDag

digits number of digits of the adjacency matrix.

... additional parameters. Not used at the moment.

Value

outputs adjacency matrix and statement of the class of x.

Examples

mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1))
print(mydag)

print.abnFit Print objects of class abnFit

Description

Print objects of class abnFit

Usage

## S3 method for class 'abnFit'
print(x, digits = 3L, ...)

Arguments

x Object of class abnFit

digits number of digits of the results.

... additional parameters. Not used at the moment.
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Value

prints the parameters of the fitted model.

print.abnHeuristic Print objects of class abnHeuristic

Description

Print objects of class abnHeuristic

Usage

## S3 method for class 'abnHeuristic'
print(x, digits = 2L, ...)

Arguments

x Object of class abnHeuristic
digits number of digits of the results.
... additional parameters. Not used at the moment.

Value

prints the best score found and the distribution of the scores.

print.abnHillClimber Print objects of class abnHillClimber

Description

Print objects of class abnHillClimber

Usage

## S3 method for class 'abnHillClimber'
print(x, digits = 3L, ...)

Arguments

x Object of class abnHillClimber
digits number of digits of the results.
... additional parameters. Not used at the moment.

Value

prints the consensus DAG and the class of the object.
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print.abnMostprobable Print objects of class abnMostprobable

Description

Print objects of class abnMostprobable

Usage

## S3 method for class 'abnMostprobable'
print(x, digits = 3L, ...)

Arguments

x Object of class abnMostprobable
digits number of digits of the results.
... additional parameters. Not used at the moment.

Value

prints the mostprobable consensus DAG.

scoreContribution Compute the score’s contribution in a network of each observation.

Description

This function computes the score’s contribution of each observation to the total network score.

Usage

scoreContribution(object = NULL,
dag = NULL, data.df = NULL, data.dists = NULL,
verbose = FALSE)

Arguments

object an object of class ’abnLearned’ produced by mostProbable, searchHeuristic
or searchHillClimber.

dag a matrix or a formula statement (see details) defining the network structure, a
directed acyclic graph (DAG), see details for format. Note that colnames and
rownames must be set.

data.df a data frame containing the data used for learning the network, binary variables
must be declared as factors and no missing values all allowed in any variable.

data.dists a named list giving the distribution for each node in the network, see details.
verbose if TRUE then provides some additional output.
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Details

This function computes the score contribution of each observation to the total network score. This
function is available only in the mle settings. To do so one uses the glm and predict functions.
This function is an attempt to perform diagnostic for an ABN analysis.

Value

A named list that contains the scores contributions: maximum likelihood, aic, bic, mdl and diagonal
values of the hat matrix.

Examples

## Not run:
## Use a subset of a built-in simulated data set
mydat <- ex1.dag.data[,c("b1","g1","p1")]

## setup distribution list for each node
mydists <- list(b1="binomial", g1="gaussian", p1="poisson")

## now build cache
mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2, method = "mle")

## Find the globally best DAG
mp.dag <- mostProbable(score.cache=mycache, score="bic", verbose = FALSE)

out <- scoreContribution(object = mp.dag)

## Observations contribution per network node
boxplot(out$bic)

## End(Not run)

searchHeuristic A family of heuristic algorithms that aims at finding high scoring di-
rected acyclic graphs

Description

A flexible implementation of multiple greedy search algorithms to find high scoring network (DAG)

Usage

searchHeuristic(score.cache, score = "mlik",
num.searches = 1, seed = 42L, start.dag = NULL,
max.steps = 100,
algo = "hc", tabu.memory = 10, temperature = 0.9,
verbose = FALSE, ...)
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Arguments

score.cache output from buildScoreCache().

score which score should be used to score the network. Possible choices are aic,
bic, mdl, mlik.

num.searches a positive integer giving the number of different search to run, see details.

seed a non-negative integer which sets the seed.

start.dag a DAG given as a matrix, see details for format, which can be used to explicity
provide a starting point for the structural search.

max.steps a constant giving the number of search steps per search, see details.

algo which heuristic algorithm should be used. Possible choices are: hc, tabu, sa.

tabu.memory a non-negative integer number to set the memory of the tabu search.

temperature a real number giving the update in temperature for the sa (simulated annealing)
search algorithm.

verbose if TRUE then provides some additional output.

... further arguments passed to or from other methods.

Details

This function is a flexible implementation of multiple greedy heuristic algorithms, particularly well
adapted to the abn framework. It targets multi-random restarts heuristic algorithms. The user can
select the num.searches and the maximum number of steps within by max.steps. The optimiza-
tion algorithm within each search is relatively rudimentary.

The function searchHeuristic is different from the searchHillClimber in the sense that this
function is fully written in R, whereas the searchHillClimber is written in C and thus expected to
be faster. The function searchHillClimber at each hill-climbing step consider every information
from the pre-computed scores cache while the function searchHeuristic performs a local stepwise
optimization. This function chooses a structural move (or edge move) and compute the score’s
change. On this point, it is closer to the MCMCMC algorithm from Madigan and York (1995) and
Giudici and Castelo (2003) with a single edge move.

If the user select random, then a random valid DAG is selected. The routine used favourise low
density structure. The function implements three algorithm selected with the parameter algo: hc,
tabu or sa.

If algo=hc: The Hill-climber algorithm (hc) is a single move algorithm. At each Hill-climbing step
within a search an arc is attempted to be added. The new score is computed and compared to the
previous network’s score.

If algo=tabu: The same algorithm is as with hc is used, but a list of banned moves is computed.
The parameter tabu.memory controls the length of the tabu list. The idea is that the classical Hill-
climber algorithm is inefficient when it should cross low probability regions to unblock from a local
maximum and reaching a higher score peak. By forcing the algorithm to choose some not already
used moves, this will force the algorithm to escape the local maximum.

If algo=sa: This variant of the heuristic search algorithm is based on simulated annealing described
by Metropolis et al. (1953). Some accepted moves could result in a decrease of the network score.
The acceptance rate can be monitored with the parameter temperature.
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Value

An object of class abnHeuristic (which extends the class abnLearnd) and contains list with en-
tires:

dags a list of DAGs

scores a vector giving the network score for the locally optimal network for each search

detailed.score a vector giving the evolution of the network score for the all the random restarts

score a number giving the network score for the locally optimal network

score.cache the pre-computed cache of scores

num.searches a numeric giving the number of random restart

max.steps a numeric giving the maximal number of optimization steps within each search

algorithm a character for indicating the algorithm used

References

Heckerman, D., Geiger, D. and Chickering, D. M. (1995). Learning Bayesian networks: The combi-
nation of knowledge and statistical data. Machine Learning, 20, 197-243. Madigan, D. and York, J.
(1995) "Bayesian graphical models for discrete data". International Statistical Review, 63:215232.
Giudici, P. and Castelo, R. (2003). "Improving Markov chain Monte Carlo model search for data
mining". Machine Learning, 50:127158. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., & Teller, E. (1953). "Equation of state calculations by fast computing machines". The
journal of chemical physics, 21(6), 1087-1092.

Examples

## Not run:
##############################################
## example: use built-in simulated data set
##############################################

mydat <- ex1.dag.data ## this data comes with abn see ?ex1.dag.data

## setup distribution list for each node
mydists<-list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial",

p2="poisson", b3="binomial", g2="gaussian", b4="binomial",
b5="binomial", g3="gaussian")

mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2)

## Now peform 10 greedy searches
heur.res <- searchHeuristic(score.cache = mycache, data.dists = mydists,

start.dag = "random", num.searches = 10,
max.steps = 50)

## Plot (one) dag
plotAbn(heur.res$dags[[1]], data.dists = mydists)

## End(Not run)
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searchHillClimber Find high scoring directed acyclic graphs using heuristic search.

Description

Find high scoring network (DAG) structures using a random re-starts greedy hill-climber heuristic
search.

Usage

searchHillClimber(score.cache, score = "mlik", num.searches = 1, seed = 42,
start.dag = NULL, support.threshold = 0.5, timing.on = TRUE,

dag.retained = NULL, verbose = FALSE, ...)

Arguments

score.cache output from buildScoreCache().

score character giving which network score should be used to select the structure.
Currently 'mlik' only.

num.searches number of times to run the search.

seed non-negative integer which sets the seed in the GSL random number generator.

start.dag a DAG given as a matrix, see details for format, which can be used to provide a
starting point for the structural search explicitly.

support.threshold

the proportion of search results - each locally optimal DAG - in which each arc
must appear to be a part of the consensus network.

timing.on extra output in terms of duration computation.

dag.retained a DAG given as a matrix, see details for format. This is necessary if the score.cache
was created using an explicit retain matrix, and the same retain matrix should
be used here. dag.retained is used by the algorithm which generates the initial
random DAG to ensure that the necessary arcs are retained.

verbose extra output.

... further arguments passed to or from other methods.

Details

The procedure runs a greedy hill-climbing search similar, but not identical, to the method presented
initially in Heckerman et al. 1995. (Machine Learning, 20, 197-243). Each search begins with a
randomly chosen DAG structure where this is constructed in such a way as to attempt to choose a
DAG uniformly from the vast landscape of possible structures. The algorithm used is as follows:
given a node cache (from buildScoreCache, then within this set of all allowed local parent com-
binations, a random combination is chosen for each node. This is then combined into a full DAG,
which is then checked for cycles, where this check iterates over the nodes in a random order. If all
nodes have at least one child (i.e., at least one cycle is present), then the first node examined has all
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its children removed, and the check for cycles is then repeated. If this has removed the only cycle
present, then this DAG is used at the starting point for the search, if not, a second node is chosen
(randomly) and the process is then repeated until a DAG is obtained.

The actual hill-climbing algorithm itself differs slightly from that presented in Heckerman et al. as
a full cache of all possible local combinations are available. At each hill-climbing step, everything
in the node cache is considered. In other words, all possible single swaps between members of
cache currently present in the DAG and those in the full cache. The single swap, which provides
the greatest increase in goodness of fit is chosen. A single swap here is the removal or addition
of any one node-parent combination present in the cache while avoiding a cycle. This means that
as well as all single arc changes (addition or removal), multiple arc changes are also considered at
each same step, note however that arc reversal in this scheme takes two steps (as this requires first
removal of a parent arc from one node and then addition of a parent arc to a different node). The
original algorithm perturbed the current DAG by only a single arc at each step but also included arc
reversal. The current implementation may not be any more efficient than the original but is arguably
more natural given a pre-computed cache of local scores.

A start DAG may be provided in which case num.searches must equal 1 - this option is really just
to provide a local search around a previously identified optimal DAG.

This function is designed for two different purposes: i) interactive visualization; and ii) longer batch
processing. The former provides easy visual "eyeballing" of data in terms of its majority consensus
network (or similar threshold), which is a graphical structure which comprises of all arcs which
feature in a given proportion (support.threshold) of locally optimal DAGs already identified
during the run. The general hope is that this structure will stabilize - become fixed - relatively
quickly, at least for problems with smaller numbers of nodes.

Value

A list with entries:

init.score a vector giving network score for initial network from which the search commenced

final.score a vector giving the network score for the locally optimal network

init.dag list of matrices, initial DAGs

final.dag list of matrices, locally optimal DAGs

consensus a matrix holding a binary graph, not necessary a DAG!

support.threshold percentage supported used to create consensus matrix

References

Lewis, F. I., and McCormick, B. J. J. (2012). Revealing the complexity of health determinants in
resource poor settings. American Journal Of Epidemiology. DOI:10.1093/aje/KWS183).
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simulateAbn Simulate data from a fitted additive Bayesian network.

Description

Simulate data from a fitted additive Bayesian network.

Usage

simulateAbn(
object = NULL,
run.simulation = TRUE,
bugsfile = NULL,
n.chains = 10L,
n.adapt = 1000L,
n.thin = 100L,
n.iter = 10000L,
seed = 42L,
verbose = FALSE,
debug = FALSE

)

Arguments

object of type abnFit.

run.simulation call JAGS to simulate data (default is TRUE).

bugsfile A path to a valid file or NULL (default) to delete the bugs file after simulation.

n.chains number of parallel chains for the model.

n.adapt number of iteration for adaptation. If n.adapt is set to zero, then no adaptation
takes place.

n.thin thinning interval for monitors.

n.iter number of iteration to monitor.

seed by default set to 42.

verbose if TRUE prints additional output

debug if TRUE prints bug file content to stdout and does not run simulations.

Value

data.frame

See Also

makebugs
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Examples

df <- FCV[, c(12:15)]
mydists <- list(Outdoor="binomial",

Sex="multinomial",
GroupSize="poisson",
Age="gaussian")

## buildScoreCache -> mostProbable() -> fitAbn()
suppressWarnings({

mycache.mle <- buildScoreCache(data.df = df, data.dists = mydists, method = "mle",
adj.vars = NULL, cor.vars = NULL,
dag.banned = NULL, dag.retained = NULL,
max.parents = 1,
which.nodes = NULL, defn.res = NULL)

}) # ignore non-convergence warnings
mp.dag.mle <- mostProbable(score.cache = mycache.mle, verbose = FALSE)
myres.mle <- fitAbn(object = mp.dag.mle, method = "mle")

myres.sim <- simulateAbn(object = myres.mle,
run.simulation = TRUE,
bugsfile = NULL,
verbose = FALSE)

str(myres.sim)
prop.table(table(myres.sim$Outdoor))
prop.table(table(df$Outdoor))

simulateDag Simulate a DAG with with arbitrary arcs density

Description

Provided with node names, returns an abnDAG. Arc density refers to the chance of a node being
connected to the node before it.

Usage

simulateDag(node.name, data.dists = NULL, edge.density = 0.5, verbose = FALSE)

Arguments

node.name a vector of character giving the names of the nodes. It gives the size of the
simulated DAG.

data.dists named list corresponding to the node.name specifying the distribution for each
node. If not provided arbitrary distributions are assigned to the nodes.

edge.density number in [0,1] specifying the edge probability in the dag.

verbose print more information on the run.
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Details

This function generates DAGs by sampling triangular matrices and reorder columns and rows ran-
domly. The network density (edge.density) is used column-wise as binomial sampling probabil-
ity. Then the matrix is named using the user-provided names.

Value

object of class abnDag consisting of a named matrix, a named list giving the distribution for each
node and an empty element for the data.

Examples

simdag <- simulateDag(node.name = c("a", "b", "c", "d"),
edge.density = 0.5,
data.dists = list(a = "gaussian",

b = "binomial",
c = "poisson",
d = "multinomial"))

## Example using Ozon entries:
dist <- list(Ozone="gaussian", Solar.R="gaussian", Wind="gaussian",

Temp="gaussian", Month="gaussian", Day="gaussian")
out <- simulateDag(node.name = names(dist), data.dists = dist, edge.density = 0.8)
plot(out)

skewness Computes skewness of a distribution

Description

Computes skewness of a distribution

Usage

skewness(x)

Arguments

x a numeric vector

Value

integer
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summary.abnDag Prints summary statistics from an object of class abnDag

Description

Prints summary statistics from an object of class abnDag

Usage

## S3 method for class 'abnDag'
summary(object, ...)

Arguments

object an object of class abnLearned, abnFit. Alternatively, a matrix or a formula
statement defining the network structure, a directed acyclic graph (DAG). Note
that row names must be set up or given in node.names.

... additional parameters. Not used at the moment.

Value

List with summary statistics of the DAG.

Examples

mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1))
summary(mydag)

summary.abnFit Print summary of objects of class abnFit

Description

Print summary of objects of class abnFit

Usage

## S3 method for class 'abnFit'
summary(object, digits = 3L, ...)

Arguments

object Object of class abnFit

digits number of digits of the results.

... additional parameters. Not used at the moment.
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Value

prints summary statistics of the fitted model.

summary.abnMostprobable

Print summary of objects of class abnMostprobable

Description

Print summary of objects of class abnMostprobable

Usage

## S3 method for class 'abnMostprobable'
summary(object, ...)

Arguments

object Object of class abnMostprobable

... additional parameters. Not used at the moment.

Value

prints the mostprobable consensus DAG and the number of observations used to calculate it.

toGraphviz Convert a DAG into graphviz format

Description

Given a matrix defining a DAG create a text file suitable for plotting with graphviz.

Usage

toGraphviz(dag,
data.df=NULL,
data.dists=NULL,
group.var=NULL,
outfile=NULL,
directed=TRUE,
verbose=FALSE)
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Arguments

dag a matrix defining a DAG.

data.df a data frame containing the data used for learning the network.

data.dists a list with named arguments matching the names of the data frame which gives
the distribution family for each variable. See fitAbn for details.

group.var only applicable for mixed models and gives the column name in data.df of the
grouping variable (which must be a factor denoting group membership). See
fitAbn for details.

outfile a character string giving the filename which will contain the graphviz graph.

directed logical; if TRUE, a directed acyclic graph is produced, otherwise an undirected
graph.

verbose if TRUE more output is printed. If TRUE and ’outfile=NULL’ the ’.dot’ file is
printed to console.

Details

Graphviz (https://www.graphviz.org) is a visualisation software developed by AT&T and freely
available. This function creates a text representation of the DAG, or the undirected graph, so this
can be plotted using graphviz. The R package, Rgraphviz (available through the Bioconductor
project https://www.bioconductor.org/) interfaces R and the working installation of graphviz.

Binary nodes will appear as squares, Gaussian as ovals and Poisson nodes as diamonds in the
resulting graphviz network diagram. There are many other shapes possible for nodes and numerous
other visual enhancements - see online graphviz documentation.

Bespoke refinements can be added by editing the raw outfile produced. For full manual editing,
particularly of the layout, or adding annotations, one easy solution is to convert a postscript format
graph (produced in graphviz using the -Tps switch) into a vector format using a tool such as pstoedit
(http://www.pstoedit.net/), and then edit using a vector drawing tool like xfig. This can then
be resaved as postscript or pdf thus retaining full vector quality.

Value

Nothing is returned, but a file outfile written.

Author(s)

Fraser Iain Lewis

Marta Pittavino

Examples

## On a typical linux system the following code constructs a nice
## looking pdf file 'graph.pdf'.
## Not run:
## Subset of a build-in dataset
mydat <- ex0.dag.data[,c("b1","b2","b3","g1","b4","p2","p4")]

## setup distribution list for each node

https://www.graphviz.org
https://www.bioconductor.org/
http://www.pstoedit.net/
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mydists <- list(b1="binomial", b2="binomial", b3="binomial",
g1="gaussian", b4="binomial", p2="poisson",

p4="poisson")
## specify DAG model
mydag <- matrix(c( 0,1,0,0,1,0,0, #

0,0,0,0,0,0,0, #
0,1,0,0,1,0,0, #
1,0,0,0,0,0,1, #
0,0,0,0,0,0,0, #
0,0,0,1,0,0,0, #
0,0,0,0,1,0,0 #

), byrow=TRUE, ncol=7)

colnames(mydag) <- rownames(mydag) <- names(mydat)

## create file for processing with graphviz
outfile <- paste(tempdir(), "graph.dot", sep="/")
toGraphviz(dag=mydag, data.df=mydat, data.dists=mydists, outfile=outfile)
## and then process using graphviz tools e.g. on linux
if(Sys.info()[["sysname"]] == "Linux" && interactive()) {

system(paste( "dot -Tpdf -o graph.pdf", outfile))
system("evince graph.pdf")

}
## Example using data with a group variable where b1<-b2
mydag <- matrix(c(0,1, 0,0), byrow=TRUE, ncol=2)

colnames(mydag) <- rownames(mydag) <- names(ex3.dag.data[,c(1,2)])
## specific distributions
mydists <- list(b1="binomial", b2="binomial")

## create file for processing with graphviz
outfile <- paste0(tempdir(), "/graph.dot")
toGraphviz(dag=mydag, data.df=ex3.dag.data[,c(1,2,14)], data.dists=mydists,

group.var="group",
outfile=outfile, directed=FALSE)

## and then process using graphviz tools e.g. on linux:
if(Sys.info()[["sysname"]] == "Linux" && interactive()) {

pdffile <- paste0(tempdir(), "/graph.pdf")
system(paste("dot -Tpdf -o ", pdffile, outfile))
system(paste("evince ", pdffile, " &")) ## or some other viewer

}

## End(Not run)
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